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LETTER TO THE EDITOR 

On the dynamics of a spherical spin-glass in a magnetic 
field 

L F Cugliandolo and D S Dean 
Service de Physique de L‘EIat Condensb Saclay, CEA. Qnue des Merisiers, 91191 
Cif-sur-Yvette Cedex, France 

Received 5 June 1995 

Abstract. We “ly out an analysis ,of the effect of a quenched magnetic field on the dynamics 
of the spherical Shenington-K@atrick spin-glass model. We show that there is a chancteiistic 
time introduced by the presence of the field. Fmt, for times sufficiently s d i  the dynamic 
scenario of the zero field -&with aging effect-is reproduced. Second, for times larger than 
the characteristic time one sees equitibrium dynamics. This dynamical behaviour is reconciled 
with the geometry of the energy landscape of the model, We compare this behaviour with 
experimental obserfations at a finite applied field, 

For some time there has been much interest in aging phenomena and in general non- 
equilibrium behaviour [ 11. For a wide range of models one finds that if the thermodynamic 
l i t  is taken before the long-time limif for quite generic initial configurations of the 
system, one never sees an equilibrium regime characterized by time translational invariance 
of the correlation function and the satisfaction of the fluctuation dissipation theorem [Z, 31. 
Recently the authors presented a detailed examination of the dynamics of the spherical 
Sherrington-Kirkpatrick (SK) spin-glass model [4] in [5], hereafter referred as I. 

In general the initial conditions do not lead the system to equilibrium and the correlation 
function was shown to exhibit the aging phenomenon. This model joins a whole range 
of models where non-equilibrium behaviour is present, however the precise physical 
mechanisms responsible for aging in various models can be completely different but still 
give the same mathematical behaviour for various dynamical functions. Aging can arise 
due to the existence of large energy barriers in the system, (see e.g. [6,7]), also due to 
the existence of zero modes in the free-energy landscape as in the case of the models 
considered in [5,8], due to a combined effect of large energy barriers and extended flat 
regions in the energy landscape as in mean-field models [Z,3,9], via domain growth or 
coarsening mechanisms in the system 1103 and even due only to entropic reasons [Ill. In 
aI1 these cases the correlation functions exhibit aging effects. However, the domain grow 
as well as the pure zero-mode mechanism do not seem to be sufficient to capture aging in 
quantities such as the magnetization. The effects of small perturbations in such models are 
rapidly erased and hence the response decays too fast to reproduce the slow relaxations of 
glassy systems. 

In this paper we revisit the spherical SK model but with the addition of a quenched 
magnetic field. For simplicity we work with a random magnetic field but this does not 
change the underlying physics of the problem. The,tiieory of linear response applied to this 
model would suggest that, for sufficiently small fields, the behaviour of the system is not 
drastically altered and that one should recover the type of aging phenomena observed in I. 
However, the random field strength appears coupled to a nonlinear term in the equation 
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for the dynamical Lagrange multiplier imposing the spherical constraint and hence it is not 
apparent that linear response theory should hold. We shall concentate on the case of zero 
temperature where the discussion of both the statics and dynamics is most clear. This is, 
however, sufficient to bring out the sentient points of the problem. One finds that the random 
magnetic field introduces a time scale into the problem. Below this characteristic time one 
indeed sees aging phenomena and the effects seen in I are reproduced. Above this timescale 
the system does indeed reach an equilibrium state. With the benefit of this insight we carry 
out a simple analysis of the energy landscape and point out that it is the disappearance 
of the preponderance of zero modes in the energy landscape which is responsible for the 
ultimate equilibrium behaviour, adding weight to the assertions made in I. 

We shall recall briefly the definition of the model. The Hamiltonian is given by 

1 
2 .. H = -- Jijsisj - hisi 

v 

subject to the spherical constraint EST = N ( N  being the number of spins). The matrix 
J is a random symmetric matrix with independently Gaussianly distributed components 
scaled with N to give the Wigner semi-circle law distribution for the eigenvalues fi in the 
thermodynamic limit, that is 

The terms hi represent the random field which is chosen to be Gaussian with zero mean 
and variance h2. n e  dynamical equation for the evolution of the spins is then given by (at 
zero temperature) [5,12] 

asi 
at 
-= Jijsj - z(t)si + h i .  (3) 

We shall assume uniform initial conditions for the spins [SI and proceed by diagonalizing the 
equations of motion and computing the dynamical Lagrange multiplier z self-consistently. 
Defining 

S2(t) & exp ( l ' z ( t ' )  dt') (4) 

we find it obeys the following equation 

(5) 
Q2(t) = f ( t ) + h Z l  di'Jd' dt"f(t-I)S2(t')bL(l") t' + t" 

In contrast with the zero field case the equation satisfied by the dynamical Lagrange 
multiplier is now nonlinear (where as before it was a linear Volterra equation [5]). The 
equation (5) is evidently very difficult to solve, however it is clearly causal and accessible 
to numerical solution. We proceed by making the following ansatz on the asymptotic form 
for S2: 

Q ( I )  - ce*' (7) 
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where c is some positive constant. Futhemore if we assume Q priori that A z 2 then 
because f ( t )  - ea(Zt)-3/2/& for sufficiently large times we may make the asymptotic 
approximation 

Assuming the is well behaved and bounded for small times we may also assume 
that the exponential behaviour dominates the double integral to obtain the following 
equation determining A 

The equation (9) yields the solution 

2 + h 2  
A =  

ATP 
hence we see  posteriori that indeed A z 2 for h 0. Of course the fact that we have found 
an asymptotic solution for equation (5) does not mean that it is the solution that matches 
with the given initial conditions (the problem of matching in these kinds of systems is, 
in general, outstanding, e.g. see [2, 91). However, we have checked numerically that this 
is indeed the case. The results of a numerical integration of equation (5) for h = 0.5 
and h = 0.4 are shown in figures 1 and 2 respectively. The function plotted is actually 
o(t) = e-zC2(t). The figures clearly show the onset of an exponential behaviour of m(f) 
around the characteristic time scale s(h) ,  with the analytically predicted rate (plotted as the 
broken curve); also shown is the zero field result (dotted curve). 
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Figure 1. Plot of m(r )  against time for h = 0.5. 

Hence we see via the above analysis that the addition of the random magnetic field 
inh’oduces a time scale r into the problem such that for times sufficiently large compared to 
T the contribution of the first term of the right-hand side of equation (5) becomes negligible 
compared to the second term. (It is, in fact, the first term that contains all the information 



L456 Letfer to the Editor 
,, . . ,, , ,, , , , , 

0.0 100.0 200.0 300.0 
t 

. .  
Figure 2. Plot of o(1) against time for k = 0.4. 

about the initial condition; the fact that it becomes negligible demonstrates that the initial 
condition is completely forgotten at large enough times.) The analysis in addition shows 
that 

-1 2+ hZ 

which cleady diverges when h + 0 as h-*. However, for sufficiently small fields and/or 
times it is the first term of the right-hand side of equation (5) which dominates, and this 
leads to the aging phenomena exhibited ‘in [5] within these fieldtime regimes. 

The explicit demonstration of equilibrium behaviour for sufficiently large times is now 
rather trivial. The correlation function is given by 

(12) 
Inserting the asymptotic form for Q simply yields 

C ( t ,  t’) - 1 (13) 
for sufficiently large times. Hence the system ultimately reaches its equilibrium state, which 
is simply the point of minimal energy in the zero temperature case. 

The energy density E ( t )  can be shown to obey 
I d  1 
2 dt E@) = --- log(s2) - -&) 2 

where 01 is the average spidfield correlation 
(14) 

One finds that 
E ( t )  -+ -m 
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and 
h2 

m’ a(t) -+ 

Now we carry out a simple analysis of the geometry of @e energy landscape for the 
model in the presence of a random magnetic field. The energy density corresponding to a 
spin configuration s is given by 

1 
2 

NE = - $ S .  J s -  h . S + A - ( s .  S- N) (18) 

where A is the (static) Lagrange multiplier imposing the spherical constraint. The variational 
equations yield the stationary solutions 

(19) s = (A - J)-’h 
where A satisfy the equation 

1 
N - h ( A  - J)-’h = h2 

For A E [-2,2] the integral above diverges, and hence for finite h we must look for solutions 
outside this interval. There are only two and are given by 

2+h2 
m’ A+ = f 

The corresponding values of the energy density can be shown to be 

The minimum of the energy is given by A+, and A- gives the maximum energy (which 
must also exist according to Morse theory). The minimum energy’and the static value of a 
are in agreement with the dynamically calculated limits in equations (16) and (17). 

E one analyses the zero magnetic field case one finds that there are N stationary points 
for the energy, each one corresponding to an eigenvector of the interaction matrix. Hence 
the effect of the field statically has been to reduce the number of stationary points from 
a macroscopic number down to just two. (This is in sharp contrast to the reduction in 
the number of metastable states in the SK model by a magnetic field, where the number 
always remains macroscopic for finite fields [13].) Therefore from almost every starting 
configuration (except the maximum which is, however, measure zero), the system has a drift 
towards the equilibrium state. It was postulated in [5] that the large number of flat regions 
in the zero field landscape was responsible for the aging phenomena observed. Here we see 
clearly that once these are erradicated an equilibrium state is achieved. 

We have analysed the influence of a magnetic field on the dynamics of the spherical SK 
spin-glass. At variance with the prediction of linear response, the aging behaviour of the 
system is completely erradicated after a characteristic time which decreases with increasing 
field strength. The failure of linea response is presumably due to the inherent nonlinearity 
introduced in the equation of motion for the dynamical Lagrange multiplier. However, 
for sufficiently short times, linear response is presumably valid and one does indeed see 
that below this time scale the aging phenomenon is present. In fact this model explicitly 
demonstrates the phenomenon of interrupted aging discussed in [14]. 

Also we have related the ultimate arrival at equilibrium of the system to the geometry of 
the energy landscape of the model, showing that the field reduces the number of stationary 
(flat) points in the energy landscape from a macroscopic number to just two. This is in 
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agreement with the notion that in the spherical SK spin-glass in the absence of a random 
magnetic field, it is the zero modes in the system which give rise to the aging phenomenon 
rather than tunnelling through large energy barriers. 

The behaviour of the spherical SK model is reminiscent of what is predicted by the 
scaling approach to spin-glasses [15]. Within the droplet picture, the low-temperature phase 
is characterized by only two pure states as for the spherical SK model. The other hall- 
mark of the droplet picture is the absence [I61 of a genuine h-T transition line (AT line 
[17]) and hence the destruction of the thermodynamic spin-glass phase by any applied field. 
However, a pseudo AT line defined as the locus of I :oints at which the system gets frozen 
on experimental times scales moving down with increasing time scales is claimed to exist 
in this approach [16]. In numerical studies [18] of the two-dimensional Ising spin-glass, 
despite the absence of a static phase transition and AT line, exactly the same phenomenon 
of a dynamical AT line has been observed. For he spherical SK model, statically there is 
no AT line but dynamically we find that the nor .equilibrium aging behaviour exists below 
a transition line that moves towards zero field v,,ien the times explored increase. 

Experimentally there is no clear evidence for the appearance of an equilibrium regime 
for spin-glasses under the influence of a magnetic field 1191. However, we expect that the 
behaviour observed in this letter may be present in other disordered systems such as the 
problem of a driven particle in a random potential [9,20]. 

We would like to thank J-P Bouchaud, J Kurchan, P Le Doussal,, M Mizard and E 
Vincent for useful discussions. DSD acknowledges support from a UK EPSRC Research 
Fellowship and also from EU grant CHRX-CT93-0411. LFC acknowledges support from 
the EU HCM grant ERB4001GT933731. 
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